
Spatial Control in Neural Style Transfer

Tom Henighan
Stanford Physics

henighan@stanford.edu

Abstract

Recent studies have shown that convolutional neural net-
works (convnets) can be used to transfer style with stun-
ning results [5]. To expand upon this, it is desirable to en-
able spatial control over this transfer of style [6]. Here
I explore methods for achieving spatial control in neural
style transfer. I focus on two distinct regimes. The first is
one which aims to slowly transition between styles in dif-
ferent regions of the image. The second regime is sharp
boundaries between different styles, for instance between
foreground and background. I propose a method, recep-
tive averaging, which gives qualitatively good results in
both regimes, with minor artifacts present in the second
regime. I also show that the use of gradient masking in
the second regime surprisingly gives more significant arti-
facts near the boundary between different styles. Finally, I
show that artifact-free results and be achieved in the sec-
ond regime by simply training two images separately with
different styles, and then stitching them together.

1. Introduction
Texture is known to play a key role in the human vi-

sual system to allow, for instance, distinguishing an orange
from a tennis ball. Algorithms which effectively distinguish
and parametrize texture are thus useful for visual recogni-
tion as well as synthesis of realistic visual scenes. Work
in this area prior to the emergence of convnets achieved im-
pressive results, as demonstrated by authors who effectively
synthesized images whose texture matches a target image
[4, 15, 3], used texture to fill in occluded regions of an im-
age [4], used texture-matching to stitch together different
images [11], and transfer the texture of one image onto an-
other [3, 8, 2, 12]. Building upon this last task, authors
showed they could transfer “style” by transferring the tex-
ture of, for instance, a painting onto a photograph [8, 2, 12].
While the results are impressive, they are restricted to using
relatively low-level features to interpret the style transfer.

Convolutional neural systems allow parametrization of
high level image features, which has led to improved state

of the art performance in computer vision tasks including
object recognition [7], segmentation [13], and image cap-
tioning [14]. It stands to reason that clever use of high
level semantic information would allow for more realistic
style transfer algorithms. Following this line of thinking,
Gatys et al using the convolutional filters of the 19 layer
VGG-net pre-trained on ImageNet achieve stunning style
transfer results [5]. In follow up work, the same authors
presented methods for transferring different styles to differ-
ent spatial regions of the output image, among other things
[6]. The authors specifically focus on having sharp bound-
aries between spatial regions of one style and another. I
here attempt to expand upon this work by exploring alterna-
tive methods for spatial control of style transfer. I focus on
two distinct regimes: smooth transitions between different
styles, and very sharp boundaries between different style
regions. For the first regime, I achieve the desired qualita-
tive result using receptive averaging to generate soft masks
which are applied when calculating the gram matrices of
the output image activation layers. For the second regime, I
show that receptive averaging still works surprisingly well,
better than masking of the gradients during backpropaga-
tion. However, this performance is superseded by simply
training the entire image on different styles and then stitch-
ing the regions together.

2. Base Algorithm Summary

The goal of the base algorithm is to create an image
which has the ”style” of one image (the style image) and the
content of another (the content image) [5]. This is achieved
using a dual loss function, where minimization of the con-
tent loss ensures the content of the output image closely
matches that of the content image, and the style loss en-
sures the style of the output image matches that of the style
image. The output image is then produced by adjusting the
output image to minimizes the combined loss.

2.1. VGG-net

In the algorithm of Gatys et al, all three images (style,
content, and output) are all fed through the 19 layer version

1

Figure 1. From Gatys et al [5]. Image representations in a Con-
volutional Neural Network (CNN). A given input image is repre-
sented as a set of filtered images at each processing stage in the
CNN. While the number of different filters increases along the
processing hierarchy, the size of the filtered images is reduced
by some downsampling mechanism (e.g. max-pooling) leading
to a decrease in the total number of units per layer of the network.
Content Reconstructions. We can visualise the information at
different processing stages in the CNN by reconstructing the input
image from only knowing the networks responses in a particular
layer. We reconstruct the input image from from layers conv1 2
(a), conv2 2 (b), conv3 2 (c), conv4 2 (d) and conv5 2 (e) of the
original VGG-Network. We find that reconstruction from lower
layers is almost perfect (ac). In higher layers of the network, de-
tailed pixel information is lost while the high-level content of the
image is preserved (d,e). Style Reconstructions. On top of the
original CNN activations we use a feature space that captures the
texture information of an input image. The style representation
computes correlations between the different features in different
layers of the CNN. We reconstruct the style of the input image
from a style representation built on different subsets of CNN lay-
ers (conv1 1 (a), conv1 1 and conv2 1 (b), conv1 1, conv2 1 and
conv3 1 (c), conv1 1, conv2 1, conv3 1 and conv4 1 (d), conv1 1,
conv2 1, conv3 1, conv4 1 and conv5 1 (e). This creates images
that match the style of a given image on an increasing scale while
discarding information of the global arrangement of the scene.

of VGG-vet 1. The convolution or pool at each layer gives a
spatial representation of some high-level features in the in-
put image. The losses will be constructed by comparison of
these feature maps of the content, style, and output images.
Following the notation of Gatys et al, let’s denote differ-
ent layers by subscript l and call the number of filters and
number of pixels in a given layer Nl and Ml, respectively.
We then store the response of the output image at layer l as
F l ∈ RNl×Ml . So F l

ij is the activation of the ith filter at
position j in layer l for the output image. We then denote

1I will be using the 16 layer version, at least to start to reduce the num-
ber of parameters and convergence time.

Figure 2. From Gatys et al [5]. Style transfer algorithm. First con-
tent and style features are extracted and stored. The style image is
passed through the network and its style representation Al on all
layers included are computed and stored (left). The content im-
age is passed through the network and the content representation
P l in one layer is stored (right). Then a random white noise out-
put image is passed through the network and its style features Gl

and content features F l are computed. On each layer included in
the style representation, the element-wise mean squared difference
between Gl and Al is computed to give the style loss Lstyle (left).
Also the mean squared difference between F l and P l is computed
to give the content loss Lcontent (right). The total loss Ltotal is then
a linear combination between the content and the style loss. Its
derivative with respect to the pixel values can be computed using
error back-propagation (middle). This gradient is used to itera-
tively update the output image until it simultaneously matches the
style features of the style image and the content features of the
content image (middle, bottom).

P l and Sl as the responses of the content and style images,
respectively, at layer l. Note that we are flattening the 2D
images to one dimension.

2.2. Content Loss

The content loss is then given by

Lcontent =
1

2

∑
ij

(F l
ij − P l

ij)
2 (1)

Where the layer l used above is a hyperparameter. It is
empirically found that for small l, minimizing the above
produces output images which closely match the content
image. As l is increased, the output image becomes an in-
creasingly distorted version of the content image.

2.3. Style Loss

In contrast to the content image, the mapping between
the output image and the style image is not spatially direct.
For instance, if the style image has a sun in the top right,
there need not be a sun in the top right corner of the output
image to match the style of the style image. Thus it seems
we want to match delocalized features of the style image. A

2

Figure 3. Illustration of Gram matrix calculation. In this toy exam-
ple, the convolutional layer of interest has two filters, giving two
images of size H ×W. The spatial dimensions are flattened onto a
single dimension. Elements of the gram matrix are then given by
the dot product of these vectors, where the ijth component of the
matrix is given by the dot product of the output from filters i and j.
Here I have written out the dot product as an element-wise multi-
plication followed by a summation to allow for easy visualization
of masking in future sections.

simple way to retain information of the high-level features
of the convnet layers while ignoring direct spatial informa-
tion is to take a dot product along the image dimension.
Doing this for all filter pairs produces the ∈ RNl×Nl Gram
matrix, which I’ve illustrated in Fig. 3. The Gram matrix
for the output image is then given by

Gl
ij =

∑
k

F l
ikF

l
jk (2)

and for the style image by

Al
ij =

∑
k

Sl
ikS

l
jk (3)

The contribution of layer l to the total loss is then

El =
1

4N2
l M

2
l

∑
ij

(Gl
ij −Al

ij)
2 (4)

Matching to higher l leads to matching of style image
features of increasing size. To preserve the style at several
scales, the style loss is defined as a weighted sum of the loss
at different layers

Lstyle =
∑
l

wlEl (5)

where the wl are the weights.

2.4. Total Loss

The total loss is then given by a weighted sum of the
content and style loss

L = αLcontent + βLstyle (6)

where the ratio of α to β is a scalar hyperparameter
which allows one to tune the relative importance of style
and content matching.

2.5. My Implementation

I have implemented the 16-layer of VGG-net (VGG-16)
in tensorflow using pre-trained weights, as well as the im-
age class labels, found on the internet [1]. The same link
provided an implementation of vgg-16 in tensorflow which
was useful as a guide. However I found it advantageous
to write my own VGG-16 implementation to make it more
concise and integrate into the rest of my codebase. Using
a few test images I confirmed the network correctly clas-
sifies the examples, indicating the network is implemented
correctly.

Here we are doing full batch training. As such, I found
L-BFGS-B [16] training to converge faster than Adam [10]
optimization. I used the Scipy [9] implementation of L-
BFGS-B which is part of the experimental/volatile module
of tensorflow 2. However, manipulation of the gradients
used in the optimization was challenging with the experi-
mental scipy optimizer. In section 4.1 where gradient ma-
nipulation was desired, I instead used adam for this reason.

Style images were re-sized to have the same number of
pixels as the content image, but retain the same aspect ratio.
If the content image had more than 250,000 pixels, it was
resized to have approximately this many pixels while retain-
ing the same aspect ratio. The output image always had the
same dimensions as the content image. Max pooling layers
were replaced with average pooling layers, as suggested by
Gatys et al [5].

Found in Fig. 4 are intermediate images produced when
training on the content loss alone (β=0), where the output
image was initialized as gaussian noise. Upon training, this
gaussian noise begins to look more and more like the style
image (in this case, a picture of a weasel). On a personal
note, I would like to say that the intermediate images of this
training image can look kindof creepy, particularly in the
early stages.

Found in Fig. 5 are the images produced when training
on the style loss alone (α=0) for only a single layer (i.e. wl

is 1 for a single l and zero for all others). This illustrates
that the network is indeed capturing the ”style,” with deeper
layers capturing higher-level and larger-scale features.

2Specifically, I used tensorflow.contrib.opt.python.training.- ex-
ternal optimizer.ScipyOptimizerInterface. For more details, see
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/opt/

3

Figure 4. Results of minimizing content loss alone at various stages of training, where the images on the right side are produced from more
training iterations. The image is initialized as gaussian noise. The content image used is seen in the inset in the bottom left.

Figure 5. Results of minimizing style loss alone (α=0) for different convolutional layers, specifically layers conv1 1, conv2 1, conv3 1,
conv4 1, and conv5 1 from left to right. Images were initialized with gaussian noise and ”Starry Night” by Van Gogh was used as the style
image (seen in inset). Deeper layers seem to capture higher-level and larger scale features. It is interesting to note that the right-most image
nearly reconstructed the style image.

Figure 6. Example output of my implementation of neural style
transfer using VGG-16. The content image is a photo of my par-
ents’ house in Ohio, while the style image is ”Starry Night” by
Van Gogh. Here the ration α/β was 1e-2.

With α and β both non-zero, the content image is ren-
dered in the style of the style image as desired. An exam-
ple output is shown in Fig. 6. In all examples used here,
the style weights wl are zero for all layers except conv1 1,
conv2 1, conv3 1, conv4 1, and conv5 1, for which they are
equal and sum to 1. Layer conv3 2 was used as the content

python/training/external optimizer.py

matching layer.

3. Gram Matrix Masking
As discussed in Section 2.3, we seek to match the gram

matrices of the convolutional layers of the output and style
images. The Gram matrix is found by taking inner products
over all spatial pixels of different filters in a given layer. A
natural way to to achieve spatial control is then to introduce
a mask at this stage, so the dot product of is no longer spa-
tially uniform. This is illustrated in Fig. 8. This idea is cen-
tral to the spatial control proposed by Gatys et al [6]. Given
a mask for layer l, T l ∈ RNl , the masked Gram matrix for
the output image is then given by

Gl
ij =

∑
k

F l
ikF

l
jkT

l
k, (7)

as illustrated in Fig. 8.
However, as the authors point out, given the desired

mask for the output image, the choice of appropriate masks
T l at the convolutional layers is not obvious. This is be-
cause pixels in the later convolutional layers have large re-
ceptive fields. Thus the rest of this section focuses on how
to choose the T l given the desired soft mask for the style on
the output image.

4

Figure 7. Illustration of masked Gram matrix calculation. Instead
of simply taking an element-wise product over all pixels in the two
images, one also multiplies this with a mask, to weigh how much
each pixel contributes to the Gram matrix. After element-wise
multiplication, the values are summed as before.

3.1. Inside Guidance

In [6], the authors focus on binary masking for hard
boundaries between segmented parts of the image. Their
solution is to unmask a pixel in the Gram matrix calcula-
tion only if it has zero pixels in the unmasked region of the
output image in its receptive field. This is known as “in-
side guidance.” However, doing this alone leaves the bound-
ary regions unstylized. To remedy this, the authors use an
eroded or dilated version of inside guidance. However they
also mention that the step of erosion/dilation requires some
tuning, as the parameters for best results vary.

3.2. Receptive Averaging

Here I propose a similar method which focuses on the
case of smooth transitions between styles rather than hard
boundaries. Thus our mask for the output image is a soft
mask (values between 0 and 1) as opposed to a binary mask.
We must then find the appropriate soft masks for the Gram
matrices at each convolutional layer. My approach is to feed
the initial soft-mask for the output image through a dras-
tically simplified version of the network. Specifically, at
each layer the convolutional kernels have the same height
(H) and width (W) as the original filter, but only one filter
(depth of 1), and the values of the kernel are all 1/(HW).
Additionally, all non-linearities are removed. This yields
the average value of the mask over all pixels in the recep-
tive field of a single pixel in the activation map. Note that
the convolutional operations are now equivalent to average
pooling. I call this method of mask propagation “recep-
tive averaging.” It should be noted this is distinct from the
method of re-sizing the mask at each layer, which is men-
tioned in passing by Gatys et al [6]. Note that if simply
resizing, a convolution which preserves spatial dimensions
would have the same mask, whereas the method proposed
here (receptive averaging) would not in general.

Figure 8. Illustration of receptive averaging method used to define
soft masks for Gram matrices in convolutional layers. Given the
desired soft mask for the output image, we convolve it with an av-
eraging kernel of the same height and width of the kernels in the
first layer of the convnet used (VGG-16 in this case). This pro-
duces a soft mask for layer 1, where the value of each pixel in the
activation map is the average over the pixels within its receptive
field. Note this is equivalent to replacing the convolutional opera-
tion with an average pooling of the same size and stride. The soft
mask for layer 2 would be made using the same procedure, with
the layer 1 mask as the input and using an average kernel with the
same height and width of the layer 2 kernel in the original convnet.
Non-linearities in the original network are removed. Average/max
pooling layers are kept but not pictured here.

3.3. Results

Examples using receptive averaging can be found in Fig.
9. In these examples, two styles and one content image are
used, with the style smoothly transitioning from one style to
the other horizontally across the image. Indeed, it appears
the desired results are achieved.

4. Alternative Methods for Binary Masking
While the spatial-control results of Gatys et al [6] are

impressive, they require some tuning at the erosion/dilation
step. A method which can produce sharp boundaries be-
tween different styles without tuning is therefore desirable.
I propose and try a few simple methods here. The best re-
sults are achieved with arguably the simplest method: train-
ing two separate images with different styles and stitching
them together. Unexpectedly, receptive averaging comes in
second, achieving a sharp boundary between styles with
only minimal artifacts. Finally, the method of gradient
masking also give sharp boundaries, but also more notice-
able artifacts near the boundary.

4.1. Gradient Masking

During optimization, one calculates the gradient of the
loss, given in Eq. (6). Since the total loss is given by a
superposition of the content loss and style loss, we could
calculate these gradients independently and then add them
(weighting by α and β) to get the gradient of the total loss.
Thus if we did not want to transfer style to one part of the

5

Figure 9. Example outputs of Receptive averaging. This allows for mixing of two different styles in one image, where we can have smooth
transitions from one style to another. In the images above, a horizontal sigmoid soft mask was used for the right style, and its complement
(one minus that mask) was used for the left style. The left content image is a photo of my parents’ home in Ohio, with the style of ”Starry
Night” by Van Gogh on the left, and ”The Scream” by Edvard Munch on the right. The right content image is a photo of me with the style
of self-portraits of Van Gogh and Picasso on the left and right respectively.

Figure 10. Example outputs for different methods of style transfer with binary masking. In all three images, the goal is to stylize the
background with the Van Gogh portrait in the top left inset, while the foreground matches the content image. The results of gradient
masking are found in subfigure a, with the mask found in the inset (black is zeros, white ones). The output image was initialized with the
content image. In b, the background from an unmasked stylized image is stitched together with the foreground of the content image. The
results of naively using receptive averaging are found in c. For c the output image was initialized to the content image.

image, one could artificially set the gradients of the style
loss with respect to those pixels to zero, add them to the gra-
dients of the content loss (again, weighting by α and β), and
use this gradient for optimization. Thus instead of masking
the activation maps when calculating the loss, one simply
masks the gradients of the output image after doing back-
propagation. From here forward I will call this procedure
“Gradient Masking.”

An example output using gradient masking is found in
Fig. 10 a. The style image is found in the top left inset
while the binary mask is found in the top right. The im-
age was initialized to the content image. While the con-
tent of the foreground was effectively unaltered as desired,
the regions just outside the boundary show artifacts. I must
say I do not fully understand the origins of these artifacts.
Naively, I would have expected that we are effectively re-
stricting the optimization to fewer dimensions, but that over

time, the pixels which we allow to vary would converge to
something matching the style of the style image in all un-
masked regions.

On a technical note: it was not obvious how one could
manipulate the gradients during optimization when using
the experimental implementation of the scipy optimizer in
tensorflow. For this reason, training was done on this image
with the adam optimizer.

4.2. Post-Optimization Stitching

An even simpler alternative is apply neural style transfer
to a single content image several times, each with different
styles, and then stitch these together. Fig. 10 b shows an
example output of this procedure. While uninventive, the
result is as desired. Unsurprisingly, there are no artifacts
near the foreground-background boundary.

6

4.3. Receptive Averaging

One can also try using receptive averaging (introduced
in Section 3). Propagating the mask forward will produce
soft masks (i.e. not binary, but between 0 and 1) at each
layer. However, doing so will not necessarily produce the
desired hard boundary. Activation map pixels whose re-
ceptive fields include both masked and unmasked pixels in
the output image will provide channels for gradients to flow
back to some of the masked pixels, blurring the boundary.

In Fig. 10 c, one finds an example output using receptive
averaging with the mask seen in the top-right inset. This
result is not perfect, but much better than I would have ex-
pected, with minimal artifacts. The faint artifacts that are
there are present on both sides of the style boundary.

5. Conclusions
Here I explore methods for spatial control in neural style

transfer.
First with a focus on soft masks allowing for smooth

transitions between styles in a single image, I present re-
ceptive averaging. In receptive averaging, activation-layer
masks based on the desired mask for the output image are
used in the Gram matrix calculations. The masks for each
layer are produced by propagating the desired output mask
through a simplified version of the convnet, where the non-
linearities are removed and convolutions are replaced by av-
erage pooling using a kernel of the same height, width, and
stride as those in the convnet. This method shows promising
results for its intended purpose: creating smooth transitions
between different styles within the output image.

Second, I show results for three different methods of cre-
ating sharp boundaries between different styles in the out-
put image with binary masks. The first is to mask the gra-
dients during backpropagation rather than masking the loss
function itself. While this does create a sharp boundary, it
produces artifacts near the edge. The second is using re-
ceptive averaging as was done for soft masks in the first
part of the paper. Despite the fact that this method does not
block gradients from the style of one region leaking into the
other, this method gives relatively good results, with min-
imal artifacts near the border. The third and final method
simply stitches together two pre-optimized images: where
the entirety of each image was rendered with only one style.
Although boring, I would say this gives the best results as
there are no artifacts near the border separating the regions
of the two styles.

References
[1] Vgg in tensorflow. https://www.cs.toronto.edu/

˜frossard/post/vgg16/. Accessed: 2017-06-12.
[2] N. Ashikhmin. Fast texture transfer. IEEE Computer Graph-

ics and Applications, 23(4):38–43, 2003.

[3] A. A. Efros and W. T. Freeman. Image quilting for tex-
ture synthesis and transfer. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 341–346. ACM, 2001.

[4] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In Computer Vision, 1999. The Pro-
ceedings of the Seventh IEEE International Conference on,
volume 2, pages 1033–1038. IEEE, 1999.

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2414–2423, 2016.

[6] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and
E. Shechtman. Controlling perceptual factors in neural style
transfer. arXiv preprint arXiv:1611.07865, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. In
European Conference on Computer Vision, pages 346–361.
Springer, 2014.

[8] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin. Image analogies. In Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 327–340. ACM, 2001.

[9] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 2017-
06-12].

[10] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[11] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: image and video synthesis using graph
cuts. In ACM Transactions on Graphics (ToG), volume 22,
pages 277–286. ACM, 2003.

[12] H. Lee, S. Seo, S. Ryoo, and K. Yoon. Directional texture
transfer. In Proceedings of the 8th International Symposium
on Non-Photorealistic Animation and Rendering, pages 43–
48. ACM, 2010.

[13] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015.

[14] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3156–3164, 2015.

[15] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th
annual conference on Computer graphics and interactive
techniques, pages 479–488. ACM Press/Addison-Wesley
Publishing Co., 2000.

[16] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathemati-
cal Software (TOMS), 23(4):550–560, 1997.

7

